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Abstract 

 
Aiming at the problems that the edge of melanoma image is fuzzy, the contrast with the 
background is low, and the hair occlusion makes it difficult to segment accurately, this paper 
proposes a model MSCNet for melanoma segmentation based on U-net frame. Firstly, a multi-
scale pyramid fusion module is designed to reconstruct the skip connection and transmit global 
information to the decoder. Secondly, the contextural information conduction module is 
innovatively added to the top of the encoder. The module provides different receptive fields 
for the segmented target by using the hole convolution with different expansion rates, so as to 
better fuse multi-scale contextural information. In addition, in order to suppress redundant 
information in the input image and pay more attention to melanoma feature information, global 
channel attention mechanism is introduced into the decoder. Finally, In order to solve the 
problem of lesion class imbalance, this paper uses a combined loss function. The algorithm of 
this paper is verified on ISIC 2017 and ISIC 2018 public datasets. The experimental results 
indicate that the proposed algorithm has better accuracy for melanoma segmentation compared 
with other CNN-based image segmentation algorithms. 
 
 
Keywords: Melanoma segmentation, Receptive field, Attention mechanism, multi-scale 
contextural information. 
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1. Introduction 

The growth rate and mortality of patients with skin cancer are high [1]. Melanoma is the 
leading cause of death in most skin cancer patients. However, studies have shown that for most 
patients, if melanoma is diagnosed early and timely, resection can be used to remove it, thereby 
improving the survival rate of patients [2]. Although melanoma can be identified visually, 
even experienced dermatologists may be misdiagnosed because of the pigmentation of skin 
surface lesions caused by melanoma. In addition to this traditional method, dermatoscopy is a 
general method in the early diagnosis of melanoma. Dermatoscope can enhance the visual 
effect of deep skin, enabling dermatologists to diagnose melanoma that is invisible to the 
naked eye. However, due to the complexity of skin lesions and the sheer volume of images, 
manually checking these dermoscopic melanoma images is a laborious exercise [3]. Thereby, 
the use of computer-aided technology to achieve accurate melanoma image segmentation has 
great practical significance in pathological diagnosis. 
At present, the methods of melanoma image segmentation are mainly divided into two 
categories: traditional image segmentation methods and image segmentation algorithms based 
on deep learning. The traditional segmentation methods contain threshold segmentation [4], 
edge detection [5], pixel clustering segmentation [6] and so on. The threshold segmentation 
method sets the threshold value to divide the pixel information of melanoma image, so as to 
segment the lesions. Garnavi in [7] first selected the appropriate color channel, and then used 
the threshold method to segment the lesion boundary. Sforza in [8] used adaptive threshold 
method to segment melanoma images. Although the threshold method is simple to operate, it 
ignores the spatial position relationship of pixels, which makes some information of melanoma 
images lost. The edge detection method uses the first order or second order differential 
operator to obtain the pixel value mutation points on the image, and then connect these pixel 
points to obtain the boundary of the region. In [9], the authors used Canny algorithm combined 
with partial differential equation segmentation method to segment the boundary of skin lesion 
area. This kind of algorithm is greatly affected by noise, resulting in wrong edge segmentation 
results. Pixel clustering segmentation method gathers the pixels with high similarity in the 
image into a region, thus forming the target segmentation region. Zhou in [10] used mean shift 
clustering algorithm to segment skin lesions. This algorithm requires manual initialization of 
pre parameters, and the segmentation speed is slow. Melanoma has problems such as different 
sizes and shapes of lesions, blurred boundaries, and unclear feature textures. In the field of 
melanoma image segmentation, traditional segmentation methods have not been widely used. 
In recent years, convolutional neural networks have some achievements in the domain of 
medical image segmentation. The authors of [11] designed a U-shaped network, which can 
fuse deep semantic information with shallow fine-grained information, and has a good effect 
in biomedical image segmentation. To capture multi-scale spatial information, Xue in [12] 
proposed a multi-scale context fusion module between the U-Net network encoder and decoder. 
Feng in [13] used CswinUnet instead of U-Net 's original encoder to effectively improve the 
network's ability to model contextual information. In [14], the authors proposed self-adaption 
feature learning network to learn the image features of skin lesions, and then adopted a step-
by-step training strategy to work out the problem of sample imbalance. The authors of [15] 
used the gate attention mechanism and feature fusion module to increase the receptive field of 
the network model, effectively improving the positioning precision of segmentation. 
Although the existing U-Net model has achieved good results, this codec structure has 
insufficient ability to extract contextual information at each stage, continuous pooling 
operations have lost a lot of spatial information, and jump connection cannot explore multi-
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scale information. In addition, melanoma segmentation often faces the challenges of low 
contrast, blurred boundaries, and hair occlusion, which makes it difficult for a simple U-Net 
network to extract advanced feature information, resulting in unsatisfactory segmentation 
results. Therefore, A new multi-scale context fusion network (MSCNet) is proposed to fuse 
global context information. First, to provide richer global context information to the decoder, 
four identical multi scale pyramid fusion modules (MSPF) are proposed to reconstruct the skip 
connections. Then, a context information conduction module (CIC) is innovatively designed, 
which is embedded at the top of the encoder. By using the dilated convolution of three 
cascaded branches, different sizes of receptive fields are provided for the segmentation target 
to better integrate multi-scale background information. In addition, adding global channel 
attention (GCA) to the decoder enables the network to raise more concern about the learning 
of melanoma features and suppress interference from irrelevant information. In the end, 
combined loss function is applied to alleviate the class imbalance problem. 
The main contributions of this paper are summarized in five aspects:  
 

(1) The MSPF module is innovatively designed to reconstruct the skip connection. The module 
is improved on the basis of ASPP. It uses dense connections to enhance feature propagation 
and shallow feature reuse, and adaptively transforms the features extracted by the encoder to 
provide global information for the decoder. 
(2) Based on the idea of RFB and SPP module, this paper proposes a DAC module and a MSP 
module. The proposed DAC block and MSP block are combined into a CIC module, which is 
embedded at the top of the encoder to obtain rich global feature information and provide multi-
scale receptive fields for segmenting lesions. 
(3) This paper proposes GCA attention, which introduces spatial attention on the basis of ECA 
channel attention. It can not only highlight the features of important channels, but also explore 
the spatial relationship between features, improve the attention to the edge contour of 
melanoma, so as to achieve accurate segmentation of melanoma.  
(4) The combined loss used in this paper is the weighted sum of BCE loss and Dice loss, so as 
to solve the problem of category imbalance.  
(5) A large number of experiments have been carried out on the public skin lesion datasets 
ISIC 2017 and ISIC 2018. Compared with other advanced segmentation algorithms, the 
superiority of this method is proved. 
 

2. Proposed Method 
 

2.1 Network model 
 

Although the U-Net model has achieved excellent segmentation results for most image 
segmentation tasks, it does not perform well in the segmentation task of melanoma. Due to 
melanoma there will be blurred boundaries, resulting in melanoma and the surrounding class 
is difficult to distinguish. In addition, the size and noise of each lesion area are different, which 
makes it difficult to segment melanoma. If U-Net is used directly to segment melanoma, the 
segmentation effect is not good. The main reason is that the encoder in U-Net uses pooling 
operations many times, which could lead to much spatial information loss. meanwhile, the U-
Net encoder 's ability to obtain context information is insufficient. Jump connections between 
encoder and decoder can only pass the same level features to the decoder for fusion. It ignores 
the global context information and does not explore more information from a full-scale 
perspective. In order to effectively segment melanoma in medical images, based on the 
structure of U-Net coding-decoding, we present a multi-scale context fusion network MSCNet. 
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The MSCNet network structure is shown in Fig. 1. 
 

Fig. 1. Overall structure of MSCNet 
 

The network MSCNet proposed in this paper mainly includes five parts: encoder, context 
information conduction module, multi-scale pyramid fusion module, global channel attention 
and decoder. Aiming at the problem that U-Net has insufficient ability to extract context 
information, this paper first innovatively designs multiple same multi-scale pyramid fusion 
modules. The module reconstructs the skip connection and adaptively transforms the features 
extracted by the encoder, so that the feature information in the decoder merges the global 
information. To capture multi-scale context semantic information, a context information 
conduction module is designed and embedded at the top of the encoder. To make the model 
concern the small characteristics of melanoma, this paper further innovatively designs the 
global channel attention, which is based on the efficient channel attention (ECA) module [16]. 
Unlike the ECA module, GCA adds a global maximum pooling to extract the global 
information of the channel. Furthermore, it can be seen from the literature [17] that spatial 
attention plays a key role in determining where the network pays attention, while the ECA 
module also ignores spatial information. In order to make the model pay attention to the spatial 
location information of the lesion at the same time, the spatial attention is embedded in the 
global channel attention to achieve accurate segmentation of melanoma. 
In addition, the U-Net original encoder is replaced by the pre-trained ResNet50, so that the 
detailed information of melanoma can be learned more fully. While distinguishing melanoma 
from background better, it can also avoid the disappearance of gradient in the training 
procedure of the network, and the precision of melanoma segmentation can be improved. 
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2.2 Context information conduction module 
 

Since the boundary of melanoma is fuzzy and the similarity between melanoma and 
background is high, when U-Net is used to segment melanoma, it is prone to over-
segmentation and under-segmentation. Rich contextual global information is critical when 
dealing with complex medical images. Although shallow low-level features can be fused with 
high-level features in the decoder through skip connections, the continuous down-sampling 
operation in the encoder results in loss of global information. Therefore, this paper 
innovatively designs a context information conduction module, which is embedded at the top 
of the encoder to obtain rich global feature information and provide multi-scale receptive fields 
for segmentation targets. The module is composed of DAC module and MSP module. The U- 
Net encoder uses 3×3 convolution and pooling operations, which can only capture feature 
information in a limited range. Inspired by Receptive field block [18] and atrous convolution, 
as shown in Fig. 2, this paper proposes a DAC module to encode advanced features. The 
module embeds different scales of dilated convolutions into three cascaded branches to 
effectively capture deeper semantic features. In the DAC module, a residual connection is used 
to avoid gradient disappearance. In addition, the size of the lesion area in a medical image can 
change. Aiming at the problem that the lesion area of advanced skin cancer is larger than that 
of early stage, this paper innovatively designs a multi-scale pooling (MSP) module, the module 
mainly segments targets of different sizes according to different receptive fields. The size of 
the receptive field directly affects how much context information the model extracts. Typically, 
the model uses only the maximum pooling of a single pooling kernel, such as 3×3. The MSP 
module uses the maximum pooling of three different pooling kernels to encode the global 
context information, which is shown in Fig. 3. And then splices with the input feature map.  
Furthermore, to decrease the computation of the model, after the splicing operation, 1×1 
convolution is used to decrease the dimension. In summary, the DAC module uses multi-scale 
atrous convolution to obtain rich feature information, and then the MSP module uses the 
maximum pooling operation of different pooling kernels to extract depth context information. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Dense atrous convolution module 

Feature map

1×1 Conv

3×3 Conv
Rate=1

Feature map

3×3 Conv
Rate=3

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

3×3 Conv
Rate=5

3×3 Conv
Rate=3



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024               1893 

 
Fig. 3. Multi scale pooling module 

 
2.3 Multi scale pyramid fusion module 
 

The encoder of U-Net can learn its feature information from the input melanoma image, 
including the surrounding environment features and categories, and obtain the corresponding 
location information at the same time. For a single stage of the U-shaped network, the ability 
to extract context information is relatively weak, which may cause a lot of global information 
to be lost when it is transmitted to the shallow layer. Moreover, the skip connection in U-Net 
is only a simple superposition. The downsampling used in each stage of the encoder ignores 
the context information, and also introduces noise and irrelevant clutter. Therefore, this paper 
designs a new multi-scale pyramid fusion module, through which the skip connection is 
reconstructed, so that the information of the current stage can be transmitted to the decoder 
through the MSPF module, which brings advanced features to the decoder. In addition, the 
MSPF module can also suppress the background noise caused by low-level features to a certain 
extent, avoiding useless noise in the segmentation results. Fig. 4 below is a schematic of the 
MSPF module. The module is a dual-branch network. The main branch uses two 3×3 
convolutions and uses dense connections, which can enhance feature propagation and shallow 
feature reuse. The side branch draws on the idea of ASPP [19]. Firstly, the channel is reduced 
by convolution of 3×3, and then the obtained feature is subjected to 1×1 convolution, 3×3 
atrous convolution with expansion rate of 6, 3×3 atrous convolution with expansion rate of 12 
and pooling operation. In order to encode the feature map, the feature maps obtained by the 
four branch operations are spliced along the channel dimension, and 1×1 convolution is used 
for channel dimension reduction. In addition, in order to provide multi-scale global 
information for the decoder, the main branch and the side branch are spliced and 1×1 
convolution is used to reduce the dimension of the channel. Considering the computational 
cost of the model, this paper uses four designed MSPF modules to reconstruct the jump 
connection. Through this module, the global context information of the current stage and the 
higher stage can be transmitted to the decoder, which improves the segmentation accuracy of 
melanoma. 

input

output

3×3 MaxPooling

5×5 MaxPooling
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Fig. 4. Multi scale pyramid fusion module 

 
2.4 Global Channel Attention 
 

U-Net uses skip connections to splice the high-resolution shallow features extracted by the 
encoder with the deep features extracted by the decoder, although the high-resolution shallow 
features can make up for the lost spatial information in the coding phase. However, the features 
extracted from the coding part are also transmitted to the decoder by encoding-decoding, so 
there is information redundancy. The attention mechanism can suppress irrelevant redundant 
information and enrich context information [20]. In order to focus on the feature information 
related to melanoma, this paper further adds Global Channel Attention (GCA) to the decoder. 
Fig. 5 shows the GCA module structure. The module adds parallel global maximum pooling 
on the basis of ECA channel attention to retain more spatial information, and also connects 
the spatial attention module in series. It can not only study the relationship between channels 
and highlight important feature channels, but also explore the spatial relationship between 
features, which improves the attention to the edge contour of melanoma, so as to achieve 
accurate segmentation of melanoma. In general, given the input feature layer H W CF R × ×∈ , 
in order to compress the spatial information of the feature map , global average pooling and 
the global maximum pooling is used, so as to obtain two different spatial information 
descriptors : 1 1c C

avgF R × ×∈  and 1 1
max
c CF R × ×∈ . After using the one-dimensional convolution 

of the shared weight for the feature descriptor, we use the element-by-element summation and 
the sigmoid function. Finally, the channel attention weight vector 1 1 CRα × ×∈ is obtained. The 
average pooling and maximum pooling calculation formulas are shown in equations 1 and 2, 
and the channel attention module CA calculation formula is shown in equation 3. Among them, 
H, W and C are high, wide and channel, respectively. σ is the sigmoid function, and Con1D 
is the one-dimensional convolution. 
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 max( 1 ( ) 1 ( ))c c
avgCon D F Con D Fα σ= +  (3) 

In order to allocate spatial attention weight on each pixel, this paper additionally uses spatial 
attention block SA, which uses F α⋅  as the input feature map to generate spatial attention 
weight 1H WRβ × ×∈ . The SA module consists of a 3×3 and a 1×1 convolutional layer. The 
final output of our GCA module is 

 'F F F Fα α β= × + × × +  (4) 

 
Fig. 5. Global Channel Attention module 

 
2.5 Loss function 
The segmentation task of melanoma is a binary classification problem from the perspective of 
pixels. The image is mainly composed of melanoma and background. Therefore, the binary 
cross entropy (BCE) function is usually used as a loss function. The calculation formula is as 
follows 
 [(1 ) log(1 ) log ]BCE i i i i

i
L y x y x= − − − +∑  (5) 

Among them, iy  and ix  are the label value and the predicted value at the i-th pixel position, 
respectively.  
However, in the segmentation task of melanoma, the background part is larger than the lesion 
part, which will lead to the imbalance of categories. The model will learn more background 
features, which will affect the feature learning of melanoma. At this time, the effect of single 
BCE loss function is not very ideal. The Dice loss function calculation formula is 

 
2
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y x
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+ +
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∑ ∑
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The Dice loss function can evaluate the classification accuracy of melanoma and background 
pixels in melanoma images, thus solving the problem of class imbalance to a certain extent. 
where γ  is a smoothing parameter to prevent the loss function from having a denominator 
of 0. Combining the characteristics of Dice loss function and BCE loss function, this paper 
proposes a joint loss function as follows 
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 BCE DiceL L L= +  (7) 

The joint loss function makes the network more efficient and stable in training, effectively 
alleviates the imbalance between melanoma and background categories, and improves the 
segmentation accuracy of melanoma. 
 

3. experiments and analysis 
 

3.1 Experimental environment 
 

The experiment in this paper is based on the Pytorch deep learning framework. The Pycharm 
compiler is used. The CPU is Intel Core i5-11400. The GPU is configured as NVIDIA GeForce 
GTX 3060 with 12 GB memory. CUDA uses 11.1 version. The operating system is Windows 
10 and the programming language is Python 3.7 of Anconda3. 
 
3.2 Experimental dataset 
 

In this paper, the segmentation performance of the proposed network model for melanoma is 
evaluated on two public skin lesion datasets. The first dataset is the skin lesion segmentation 
datase from the Kaggle competition platform of International Skin Imaging Cooperation 
Organization (ISIC) 2017 [21]. The dataset contains 2000 original images of different types 
of skin lesions such as melanoma, nevus and seborrheic keratosis. The original size of each 
image is 576 x 767 and all have a label map marked by a professional doctor. Using the data 
set division method in [22]. in this paper,1250 images are used for training, 150 images are 
used for verification and 600 images as a test set. The other is the ISIC 2018 melanoma 
segmentation data set released by [23]. In this dataset, there are 2594 melanoma images, and 
the resolution of each image is 2016x3024. The 2594 pictures are divided into three parts: 
1815 for training, 259 for verification, and 520 for testing. The images and corresponding 
labels of the experimental dataset are shown in Fig. 6 and Fig. 7. 
 

 

 
 
 
 
 

Fig. 6. ISIC2017 dataset and its annotation image 

 

 

 

 

 
Fig. 7. ISIC2018 dataset and its annotation image 
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3.3 Data preprocessing and related settings 
 

In the domain of deep learning, a large number of datasets is vital for the network models to 
train, considering the small number of datasets in this experiment, the model will have over-
fitting. Therefore, to heighten the generalization capability of the model, the data needs to be 
expanded. The training set image and the corresponding label image are subjected to 0 to 360 
degrees of random rotation, contrast enhancement and other data enhancement. As shown in 
Fig. 8, the first column is the original image, the second column is a randomly rotated image 
from 0 to 360 degrees, the third column is a brightness-enhanced image, and the fourth column 
is a contrast-enhanced image. Aiming at the problem that the original image is large, to save 
computing resources, the algorithm adjusts the image size to a resolution of 256×256.  
In the experiment, the images and real labels of the preprocessed data set are sent to the 
network for training. In the training process of the model, the stochastic gradient descent (SGD) 
optimization algorithm is used to iteratively update the parameters. The learning rate is set to 
0.001, and the learning rate is dynamically adjusted during the training process. The weight 
decay and the batch size is set to 0.0001 and 16 respectively, the momentum parameter and 
the epoch is set to 0.9 and 100 respectively. When the loss function decreases and tends to be 
stable, the training is stopped, and the weight with the smallest loss is selected for testing to 
obtain the best model performance data. 

Fig. 8. Data enhancement 
 

3.4 Contrast experiment 
 

In order to evaluate the segmentation performance of different algorithms for melanoma, this 
paper uses common metrics such as accuracy, specificity, IoU, dice, precision and recall. In 
addition, this paper uses the receiver operating characteristic (ROC) and precision-recall (P-
R) curve to further evaluate the performance of the algorithm.The results of melanoma 
detection on the ISIC 2017 dataset are shown in Table 1. The MSCNet is compared with the 
six image segmentation algorithms of U-net [11], Attention U-net [24], U-net ++ [25], CA-net 
[26], R2U-net [27] and PraNet [28] under the same conditions. The experimental results of 
CPFNet [29], SESV [30], MB-DCNN [31] and DAGAN [32] are from FAT-Net [33], and the 
Precision, PR and ROC of these methods are not given in FAT-Net [33]. The experimental 
results show that the MSCNet is the best in Accuracy (0.9784), Recall (0.9111), IoU (0.8347), 
Dice (0.9099), area under the ROC curve (0.9529) and area under the PR curve (0.9134). The 
ROC curve and P-R curve are shown in Fig. 9. The most obvious improvement is that the area 
under the ROC curve is 0.024 higher than that of U-net [11]. Although R2U-net [27] is superior 
to MSCNet in specificity and accuracy, the other six evaluation indicators are significantly 
lower than MSCNet, and the recall rate is the most obvious, 0.0619 lower than MSCNet in 
this paper. 
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Fig. 9. ROC and PR curves on ISIC 2017 dataset 
 

Table 1. ISIC 2017 dataset detection results and comparative experiment 
Method Year Accuracy Recall Specificity Precision Dice IoU PR ROC 

U-net[11] 2015 0.9696 0.8831 0.9813 0.8655 0.8742 0.7765 0.8949 0.9289 

Attention U-

net[24] 

2018 0.9694 0.8860 0.9807 0.8619 0.8738 0.7759 0.8912 0.9296 

R2U-net[27] 2018 0.9721 0.8492 0.9887 0.9110 0.8790 0.7842 0.8969 0.9164 

U-net++[25] 2019 0.9731 0.8776 0.9860 0.8952 0.8863 0.7959 0.9021 0.9259 

CA-net[26] 2020 0.9676 0.8545 0.9829 0.8718 0.8630 0.7591 0.8851 0.9174 

PraNet[28] 2020 0.9707 0.8758 0.9835 0.8784 0.8771 0.7823 0.8941 0.9241 

CPFNet[29] 2020 0.9215 0.8344 0.9645 - 0.8403 0.7546 - - 

SESV[30] 2020 0.9223 0.8326 0.9668 - 0.8392 0.7531 - - 

MB-DCNN[31] 2020 0.9311 0.8325 0.9684 - 0.8427 0.7603 - - 

DAGAN[32] 2020 0.9304 0.8363 0.9716 - 0.8425 0.7594 - - 

FAT-Net[33] 2021 0.9326 0.8392 0.9725 - 0.8500 0.7653 - - 

Ours 2022 0.9784 0.9111 0.9875 0.9087 0.9099 0.8347 0.9134 0.9529 

 
Table 2 shows the experimental results on ISIC 2018 dataset. MSCNet was compared with 11 
other image segmentation algorithms. The experimental results of CPFNet [29], DAGAN [32], 
Resunet + + [34], CKDNet [35] are from FAT-Net [33], and the Precision, PR and ROC of 
these methods are not given in FAT-Net [33]. From the experimental results, the MSCNet is 
the best in accuracy (0.9658), intersection ratio (0.8267), Dice (0.9051), ROC AUC (0.9362) 
and P-R AUC (0.9294). Among them, compared with FAT-Net [33], Dice increased by 0.0148. 
Similarly, this paper gives the ROC-PR curve. As shown in Fig.10, the area under the ROC 
curve and the area under the PR curve of the algorithm are 0.9362 and 0.9294, respectively. 
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Fig. 10. ROC and PR curves on ISIC 2018 dataset 

 
Table 2. ISIC 2018 dataset detection results and comparative experiment 

Method Year Accuracy Recall Specificity Precision Dice IoU PR ROC 

U-net[11] 2015 0.9569 0.8874 0.9724 0.8775 0.8824 0.7896 0.9125 0.9223 

Attention U-net[24] 2018 0.9497 0.8680 0.9679 0.8578 0.8629 0.7588 0.9005 0.9183 

R2U-net[27] 2018 0.9528 0.7959 0.9877 0.9355 0.8601 0.7545 0.8979 0.8902 

U-net++[25] 2019 0.9568 0.8811 0.9737 0.8819 0.8815 0.7881 0.9090 0.9235 

Resunet++[34] 2019 0.9382 0.8735 0.9721 - 0.8536 0.7721 - - 

CA-net[26] 2020 0.9507 0.7876 0.9871 0.9314 0.8535 0.7444 0.8898 0.8858 

PraNet[28] 2020 0.9544 0.8664 0.9739 0.8811 0.8737 0.7757 0.9045 0.9192 

CPFNet[29] 2020 0.9496 0.8953 0.9655 - 0.8769 0.7988 - - 

DAGAN[32] 2020 0.9324 0.9072 0.9588 - 0.8807 0.8113 - - 

CKDNet[35] 2021 0.9492 0.9055 0.9701 - 0.8779 0.8041 - - 

FAT-Net[33] 2021 0.9578 0.9100 0.9699 - 0.8903 0.8202 - - 

Ours 2022 0.9658 0.8961 0.9813 0.9184 0.9051 0.8267 0.9294 0.9362 

 

3.5 Ablation experiment 
 

For the sake of verifying the effectiveness of each module and fusion strategy in the proposed 
algorithm, this experiment takes U-Net as the Baseline, and conducts ablation experiments on 
the MSPF module that fuses skip connections, the CIC module between codecs, and the GCA 
module embedded in the decoder on the ISIC 2017 dataset and the ISIC 2018 dataset. From 
the Table 3 and Table 4, it can be seen the segmentation results of different fusion strategies, 
and the bold text is the optimal value of each column index. 
 

Table 3. Ablation experiments of MSCNet on ISIC 2017 datasets  
Method Accuracy Recall Specificity Precision Dice IoU PR ROC 

Baseline 0.9596 0.9280 0.9639 0.7772 0.8459 0.7330 0.8569 0.9459 

Baseline+CIC 0.9736 0.8975 0.9839 0.8837 0.8905 0.8027 0.8967 0.9407 
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Baseline+MSPF 0.9755 0.9164 0.9835 0.8831 0.8994 0.8173 0.9047 0.9499 

Baseline+GCA 0.9739 0.9369 0.9790 0.8583 0.8958 0.8114 0.9013 0.9493 

Baseline+CIC+MSPF 0.9756 0.9081 0.9847 0.8900 0.8990 0.8165 0.9045 0.9464 

Baseline+CIC+GCA 0.9754 0.9027 0.9852 0.8925 0.8976 0.8142 0.9034 0.9439 

Baseline+GCA+MSPF 0.9741 0.9376 0.9791 0.8588 0.8965 0.8124 0.9019 0.9483 

Ours 0.9784 0.9111 0.9875 0.9087 0.9099 0.8347 0.9134 0.9529 

 
Table 4. Ablation experiments of MSCNet on ISIC 2018 datasets 

Method Accuracy Recall Specificity Precision Dice IoU PR ROC 

Baseline 0.9538 0.8190 0.9838 0.9143 0.8659 0.7635 0.8852 0.9014 

Baseline+CIC 0.9587 0.8782 0.9766 0.8934 0.8857 0.7949 0.8969 0.9274 

Baseline+MSPF 0.9545 0.9063 0.9652 0.8529 0.8788 0.7838 0.8881 0.9357 

Baseline+GCA 0.9596 0.8627 0.9812 0.9111 0.8862 0.7957 0.8994 0.9219 

Baseline+CIC+MSPF 0.9627 0.9034 0.9759 0.8930 0.8982 0.8152 0.9070 0.9296 

Baseline+CIC+GCA 0.9610 0.9068 0.9731 0.8826 0.8945 0.8092 0.9032 0.9300 

Baseline+GCA+MSPF 0.9583 0.9116 0.9687 0.8665 0.8885 0.7994 0.8971 0.9302 

Ours 0.9658 0.8961 0.9813 0.9184 0.9051 0.8267 0.9294 0.9362 

 
From the data in the table, it can be found that on the basis of Baseline, the effect of adding 
any designed module is better than baseline.Meanwhile, the effect of the baseline with two 
modules is also better than that of adding only a single module. The performance of the 
MSCNet exceeds other image segmentation algorithms. On the basis of adding CIC and MSPF 
modules, the GCA attention module is embedded, which makes the model take notice of the 
edge contour information of melanoma, strengthen the attention to useful information, and 
achieve the best segmentation effect. On the ISIC 2017 dataset, the Dice value reached 90.99% 
and the accuracy rate reached 97.84 %. On the ISIC 2018 dataset, the Dice value reached 
90.51 % and the accuracy rate reached 96.58 %. This also indirectly proves that the CIC, MSPF 
and GCA modules designed in this paper are effective in improving the segmentation 
performance of melanoma. Although it can be seen from Table 4 that the specificity is lower 
than the baseline, which means that the misdiagnosis rate of the MSCNet will be slightly 
higher than the baseline. The accuracy, IOU, Dice, PR and ROC of the MSCNet are far higher 
than the baseline, and the segmentation results are also far better than the baseline, which is 
enough to prove the superiority of the MSCNet. In subsequent studies, we will focus on the 
improvement of specificity to reduce the rate of misdiagnosis. For example, the introduction 
of more negative samples in the training data can help the model learn more background 
information, thereby improving specificity. Or adjust the network, increase the depth of the 
network, and introduce more nonlinear transformations to enhance the specificity of the 
network. 
In order to compare the effects of different loss functions, ablation experiments were 
performed on the ISIC 2017 and ISIC 2018 datasets for BCE loss, Dice loss, and BCE+Dice 
loss, respectively. The results of different loss functions on ISIC 2017 datasets are shown in 
Table 5. It can be seen that the performance indicators obtained by BCE+Dice loss used in 
this paper are the highest. Among them, Dice is 0.019 higher than Dice loss, and IOU is 0.0397 
higher than BCE loss. From the data in Table 6, it can be seen that the indicators have 
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improved. The experimental results show that the use of BCE+Dice loss is superior to the use 
of the other two loss functions on the ISIC 2017 and 2018 datasets. 
 

Table 5. Results of segmentation with different loss functions on ISIC 2017 datasets 
Method Loss Accuracy Recall Specificity Precision Dice IoU PR ROC 

Ours BCE 0.9709 0.9049 0.9744 0.8336 0.8858 0.7950 0.8926 0.9396 

Ours Dice 0.9735 0.9060 0.9826 0.8763 0.8909 0.8033 0.8967 0.9443 

Ours BCE+Dice 0.9784 0.9111 0.9875 0.9087 0.9099 0.8347 0.9134 0.9529 

 
Table 6. Results of segmentation with different loss functions on ISIC 2018 datasets 

Method Loss Accuracy Recall Specificity Precision Dice IoU PR ROC 

Ours BCE 0.9613 0.8726 0.9699 0.8724 0.8968 0.8129 0.9045 0.9263 

Ours Dice 0.9640 0.8828 0.9721 0.9065 0.8993 0.8171 0.9103 0.9324 

Ours BCE+Dice 0.9658 0.8961 0.9813 0.9184 0.9051 0.8267 0.9294 0.9362 

 
3.6 Visual analysis 
 

In order to illustrate the superiority of the proposed algorithm in melanoma segmentation, five 
images were randomly selected in the ISIC 2017 testset and the segmentation effect maps of 
different algorithms were given, Fig.11 shows the results. Obviously, melanoma image 
irregular shape, incomplete edges, features similar to the surrounding background, so 
melanoma detection is a challenging problem. It can be seen from the first row diagram that 
only the algorithm in this paper and CA-net [27] have better detection results, but CA-net [27] 
is affected by blood on the skin surface, resulting in a subtle gap in the lower edge detection. 
The algorithm in this paper adds attention, and the network can suppress the interference of 
irrelevant factors, so as to notice the edge contour information of melanoma. The boundary of 
the second and fifth lines of melanoma images is blurred, which causes great interference to 
the detection. From the detection results, only MSCNet can robustly segment melanoma, and 
the detection results of the other five algorithms are incomplete. 
The detection results of melanoma on the ISIC 2018 dataset are visualized as shown in Fig.12. 
The melanoma image in the ISIC 2018 dataset has the interference of multiple body hairs and 
skin colors, and the background is more complex. Therefore, melanoma detection in this 
dataset is also a serious challenge. From the first row diagram, it can be seen that although the 
six algorithms can detect a good result, the U-net ++ [26] algorithm has a false detection, and 
the remaining five algorithms are not detailed enough for the edge contour detection of 
melanoma. Only the MSCNet in this paper can detect the detailed edge contour. Obviously, 
from the second row, when the melanoma area is large, most of the missed detection occurs in 
each algorithm. The algorithm in this paper introduces the context information transmission 
module, which can effectively capture more advanced information and achieve the best 
segmentation effect. From the third, fourth and fifth row graphs, it can be seen that all six 
algorithms have false detection. The algorithm in this paper designs a multi-scale pyramid 
fusion module, which can effectively extract and utilize multi-scale context information. This 
information is necessary for accurate segmentation of targets and can avoid fuzzy decisions. 
In order to further verify the validity of each module in the model, this paper visualizes the 
heat map of the model of the ablation experiment, so as to understand the relevant features of 
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the segmentation that the model focuses on. The heat map is shown in Fig.13. It can be clearly 
seen from the diagram that the baseline only focuses on a small part of the lesion, while adding 
any module of CIC, MSPF and GCA can increase the attention to the lesion, and the pairwise 
combination of modules is also better than a single module. Finally, the model in this paper 
pays the most comprehensive attention to the lesion and is also optimal. 
 

Fig. 11. Segmentation results of different algorithms on ISIC 2017 dataset 
 

Fig. 12. Segmentation results of different algorithms on ISIC 2018 dataset 

Image Label Ours Attention U-
net CA-net PraNet R2U-net U-net U-net++

Image Label Ours Attention U-
net CA-net PraNet R2U-net U-net U-net++
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Fig. 13. Attention heatmaps of ablation experimental model 

 

4. Conclusion 
 

In clinical medical applications, melanoma segmentation is the basis of automatic detection of 
medical images and an important prerequisite for computer-aided doctor diagnosis. It is of 
great significance for promoting precision medical diagnosis. Aiming at the problem that the 
traditional U-shaped neural network has insufficient ability to extract context information, A 
new multi-scale context fusion network (MSCNet) is proposed to fuse global context 
information. Firstly, the MSPF module is innovatively designed, which is added to the skip 
connection to fuse the high-stage information and provide global information guidance for the 
decoder. Secondly, the CIC module is innovatively added to the top of the encoder, which can 
provide different scales of receptive fields for melanoma segmentation by using dilated 
convolution with different expansion rates, so as to effectively fuse Contextual feature 
information and enhance the accuracy of segmentation. In order to make the model take notice 
of the feature information related to the segmentation target, the GCA module is embedded in 
the decoder to enhance the attention to the edge contour and tiny features of melanoma. Finally, 
the combination of binary cross entropy and Dice loss function is used to solve the problem of 
target class imbalance. Experimental results show that MSCNet is better than other 
segmentation algorithms, and can accurately segment melanoma with good robustness and 
generalization. 
Although this algorithm has achieved some results, but there are still some problems need 
further study. For example, the dataset of melanoma images can be augmented by adversarial 
networks. Moreover, the model ignores the long-range dependence of image information and 
can be integrated into the transformer method for future research. In the subsequent clinical 
application, the development of melanoma image segmentation system for clinical diagnosis 
is also the direction of future efforts. 
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